Extensions 1→N→G→Q→1 with N=C22×C30 and Q=C2

Direct product G=N×Q with N=C22×C30 and Q=C2
dρLabelID
C23×C30240C2^3xC30240,208

Semidirect products G=N:Q with N=C22×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C22×C30)⋊1C2 = D4×C30φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30):1C2240,186
(C22×C30)⋊2C2 = C2×C157D4φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30):2C2240,184
(C22×C30)⋊3C2 = C23×D15φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30):3C2240,207
(C22×C30)⋊4C2 = C6×C5⋊D4φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30):4C2240,164
(C22×C30)⋊5C2 = D5×C22×C6φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30):5C2240,205
(C22×C30)⋊6C2 = C10×C3⋊D4φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30):6C2240,174
(C22×C30)⋊7C2 = S3×C22×C10φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30):7C2240,206

Non-split extensions G=N.Q with N=C22×C30 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C22×C30).1C2 = C15×C22⋊C4φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30).1C2240,82
(C22×C30).2C2 = C30.38D4φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30).2C2240,80
(C22×C30).3C2 = C22×Dic15φ: C2/C1C2 ⊆ Aut C22×C30240(C2^2xC30).3C2240,183
(C22×C30).4C2 = C3×C23.D5φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30).4C2240,48
(C22×C30).5C2 = C2×C6×Dic5φ: C2/C1C2 ⊆ Aut C22×C30240(C2^2xC30).5C2240,163
(C22×C30).6C2 = C5×C6.D4φ: C2/C1C2 ⊆ Aut C22×C30120(C2^2xC30).6C2240,64
(C22×C30).7C2 = Dic3×C2×C10φ: C2/C1C2 ⊆ Aut C22×C30240(C2^2xC30).7C2240,173

׿
×
𝔽